Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 110(4): e16159, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36943007

RESUMO

PREMISE: The possibility of fine-scale intraspecific adaptive divergence under gene flow is established by theoretical models and has been confirmed empirically in tree populations distributed along steep altitudinal clines or across extreme edaphic discontinuities. However, the possibility of microgeographic adaptive divergence due to less severe but more frequent kinds of soil variation is unclear. METHODS: In this study, we looked for evidence of local adaptation to calcareous versus siliceous soil types in two nearby Mediterranean Pinus sylvestris populations connected via pollen flow. Using a greenhouse experiment, we tested for variation in early (up to three years of age) seedling performance among open-pollinated maternal families originating from each edaphic provenance when experimentally grown on both types of natural local substrate. RESULTS: Although seedlings were clearly affected by the edaphic environment, exhibiting lower and slower emergence as well as higher mortality on the calcareous than in the siliceous substrate, neither the performance on each substrate nor the plasticity among substrates varied significantly with seedling edaphic provenance. CONCLUSIONS: We found no evidence of local adaptation to a non-extreme edaphic discontinuity over a small spatial scale, at least during early stages of seedling establishment. Future studies on microgeographic soil-driven adaptation should consider long-term experiments to minimize maternal effects and allow a potentially delayed expression of edaphic adaptive divergence.


Assuntos
Pinus sylvestris , Pinus , Solo , Pinus sylvestris/genética , Fenótipo , Adaptação Fisiológica , Aclimatação , Plântula/genética , Pinus/genética
2.
PLoS One ; 16(8): e0255776, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34388195

RESUMO

The estimation of recent gene flow rates among vast and often weakly genetically differentiated tree populations remains a great challenge. Yet, empirical information would help understanding the interaction between gene flow and local adaptation in present-day non-equilibrium forests. We investigate here recent gene flow rates between two large native Scots pine (Pinus sylvestris L.) populations in central Iberian Peninsula (Spain), which grow on contrasting edaphic conditions six kilometers apart from each other and show substantial quantitative trait divergence in common garden experiments. Using a sample of 1,200 adult and offspring chloroplast-microsatellite haplotypes and a Bayesian inference model, we estimated substantial male gametic gene flow rates (8 and 21%) between the two natural populations, and even greater estimated immigration rates (42 and 64%) from nearby plantations into the two natural populations. Our results suggest that local pollen shedding within large tree populations does not preclude long-distance pollen immigration from large external sources, supporting the role of gene flow as a homogenizing evolutionary force contributing to low molecular genetic differentiation among populations of widely distributed wind-pollinated species. Our results also indicate the high potential for reproductive connectivity in large fragmented populations of wind-pollinated trees, and draw attention to a potential scenario of adaptive genetic divergence in quantitative traits under high gene flow.


Assuntos
Fluxo Gênico/genética , Genética Populacional , Pinus sylvestris/genética , Pólen/genética , Florestas , Variação Genética/genética , Haplótipos/genética , Polinização/genética , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...